
1

Advanced Texture-Mapping
Curves and Curved Surfaces

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
July 26, 2005

Pre-Lecture Business

loadtexture example
midterm handed back, code posted
(still) get going on pp3!
more on texturing
review quiz

Texture Modes

glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE,
mode);

untextured GL_DECAL GL_MODULATE

Useless parameter…
always GL_TEXTURE_ENV

Tell GL I’m changing the
texture mode…Tell GL what

to do with my
textures

Texture Modes

What happened to
lego man’s face?

Holy crap…
I have no

face!

What does a texture map for a complex
model “look like”? Review quiz

What is shading?
What is lighting?
What is the difference between
smooth shading and flat shading?
Why do we interpolate texture
coordinates in 3D instead of in 2D?

2

Outline for today

Advanced texture mapping
Texture coordinate generation
Curves and curved surfaces
The OpenGL pipeline revisited

Advanced Texture Mapping

Billboarding (easiest)
Bump Mapping (in between)
Environment Mapping (hardest)

Some form of any of these would be
great extra credit for your pp’s…

Billboarding
Sometimes I can really get away with
letting entire objects be 2D

Objects that are far-away
Objects that look the same from everywhere,
like particles of dust…

An easy way to render 2D objects that
look nice is to just use a textured quad…

Billboarding
So a good trick is to make sure “billboard” objects
always face the camera
Assume we know the camera is at (cx,cy,cz) and
my tree is at (tx,ty,tz)
Assume we know how to render a quad facing +z
How can I do this in OpenGL?

camera

tree
When does this
approach break
down, even if I’m
still far away? I.e.,
when will my tree
not look right?

Billboarding Examples Bump mapping (aka normal mapping)

Instead of modulating the color at
each pixel, what if we modulated
the normal at each pixel?
Lots more detail without more
vertices…

just texture texture + bump map

3

Bump mapping examples What does a bump map “look like”?

Bump mapping in OpenGL (overview)

Why does bump mapping come with a
big performance penalty?

Store all the surface normals in one texture
Store a vector from each vertex to our light in the other
texture
Using an OpenGL extension, tell OpenGL to dot these two
textures, i.e. perform the diffuse lighting computation at
each pixel

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_COMBINE_ARB);

glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB,

GL_DOT3_RGB_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB,

GL_PREVIOUS_ARB);

Environment Mapping

“Shiny” objects should reflect light
from the objects around them and
act like mini-mirrors
OpenGL lighting can’t do this

In fact OpenGL lighting ignores all
other objects in the scene when it
lights each vertex…

But we can approximate this with
textures…

Environment Mapping: Building a Texture

Imagine putting my OpenGL camera at
the position of an object and taking a
panoramic picture of the world, then
storing the result in a texture…

This really means “rendering a few times with
the camera pointed in different directions”

my
object

1D environment
map of a 2D scene

2D environment
map of a 3D scene

Environment Mapping:
Generating Texture Coordinates

Now imagine that I assign texture
coordinates to my object by just
subtracting the object center from each
vertex position…
I.e., each texture coordinate tells me
“which way this vertex looks”

my
object

texture
coordinates

4

Environment Mapping: The Result

If I get the mapping right, this will
let me paste “a picture of the
environment” on my object

Environment Mapping: Limitations

Why is it hard to do this in real-
time?

In practice, static environment
maps are often used and look pretty
good…

Environment Mapping: Relighting
Can also capture real panoramic pictures
of the world and use them to “re-light”
virtual objects
Often done by photographing a mirrored
ball

Outline for today

Advanced texture mapping
Texture coordinate generation
Curves and curved surfaces
The OpenGL pipeline revisited

Texture Coordinate Generation
Where did all these texture coordinates come from?
Generally part of the modeling process: textures are
built to line up with the texcoords on one specific
object

What tools are available to modelers to assign
texture coordinates to an object?

Texture Coordinate Generation
In general, mapping a flat surface to a 3-D object
is difficult
Some objects – like cylinders – have a natural
mapping, because you can wrap a flat sheet
around them

I.e. if I gave you a piece of wrapping paper and told
you to paste it onto a cylinder it would be pretty
straightforward

5

Texture Coordinate Generation
Some objects – like spheres – will always
cause distortion when wrapped with a
texture

I.e. if I gave you a piece of wrapping paper
and told you to paste it onto a bowling ball,
you would run into problems

Texture Coordinate Generation

In general, modeling programs
know how to generate textures in
small patches that fit well

Texture Coordinate Generation
Modeling programs usually offer various
tools for generating texture coordinates:

planar

cylindrical

spherical

shrink-wrap

box

face

TexGen in OpenGL
Usually your texture coordinates come from a
model file or are generated explicitly
But OpenGL can also generate texture coordinates
on-the-fly…

glEnable(GL_TEXTURE_GEN_T);
glTexGenf(GL_T, GL_TEXTURE_GEN_MODE,

GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glTexGenf(GL_S, GL_TEXTURE_GEN_MODE,

GL_SPHERE_MAP);

…now whenever I send vertices to OpenGL, it will
generate sphere map coordinates for me.

When might I want to do this (something we
talked about earlier today)?

Projective Textures
A real strength of using OpenGL’s texture
generation is that it can generate planar
texture coordinates on a plane that faces
the eye or faces some point…
This lets us do projective texturing:

Outline for today

Advanced texture mapping
Texture coordinate generation
Curves and curved surfaces
The OpenGL pipeline revisited

6

Curves and Curved Surfaces

Bezier Curves
B-Splines
Bezier Surfaces

Why do we need more curves?

We talked about ruled surfaces,
surfaces of revolution, quadrics, etc.
Most real curved objects can’t be
built from these simple primitives

Control Points

The most common approach to defining
curves is to specify a set of control
points: “my curve should go somewhere
near these points”
A mathematical function or algorithm can
automatically generate the curve based
on the control points

Take One: Linear Interpolation

Let’s generate a line segment between p0 and p1,
parameterized by t on the interval [0,1]

p(t) = (1-t)p0 + (t)p1

We could use this to interpolate lots of points if we
wanted to…

Why do we need fancier methods?

p0 p1p(0.5)

p(0.3)

p’1(0.3)p1

p0 p2

de Casteljau’s Algorithm

I want to generate a curve controlled by
three points.
We’ll parameterize on t = [0,1]
To find p(t), interpolate between p0 and
p1, and interpolate between p1 and p2
Then interpolate between those two points
to find p(t)

p(0.0) p(1.0)

p’0(0.3)

Bezier Curves
If we do this for lots of t values, we get a smooth
curve:

This is called a Bezier curve, because Monsieur
Bezier developed the algebraic form of the same
curve that de Casteljau generated

7

Bezier Curves: Closed Form
What’s the closed-form expression for p(t)?

For our curve with only three points:

p’0(t) = (1-t)p0 + (t)p1
p’1(t) = (1-t)p1 + (t)p2

p(t) = (1-t)*p’0(t) + t*p’1(t)

p(t) = (1-t)2 * p0 + 2t(1-t) * p1 + t2 * p2

This curve is of degree 2 (a parabola)

We could do the same math for any degree (any
number of control points)

Bezier Curves: Bernstein Form

Fortunately someone else already did that
math for us…
For a Bezier curve with L control points p0, p1,
p2, … pL, the Bezier curve is:

Bk
L(t) is a Bernstein polynomial:

∑
=

=
L

k

L
kk tBptp

0

)()(

kkLL
k tt

k
L

tB *)1()(−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

B-polynomials are blending functions

The closed form expression again:

The Bezier curve is a blend of the control
points
Bernstein polynomials control how much
weight each control point gets; we call them
blending functions
There are lots of different blending functions
out there… how did the Bernstein functions get
to be so popular?

∑
=

=
L

k

L
kk tBptp

0

)()(

Nice properties of Bezier curves

Endpoint interpolation:
A Bezier curve always passes through the first and last
control points

Transformation invariance:
I can transform the control points and the curve will
transform “correctly”

Convex hull preservation:
Bezier curves stay within the convex hull of the control
points

Smoothness at endpoints:
The slope of the curve at an endpoint is the same as
the slope of the last “control segment”

Cubic Bezier functions are particularly popular…

Bezier curves in OpenGL [bezcurve.cpp]

OpenGL evaluators take t values and control points
and generate vertices for you:

// GL, when I tell you to, evaluate a Bezier curve
// with order N and these control points…
glMap1f(GL_MAP1_VERTEX_3, 0, 1, 3, N,

controlpoints);

// GL, please generate a vertex for the value t, using
// the Bezier curve I told you about previously
glEvalCoord1f(t);

// GL, please generate 30 points on my curve from
// t = 0 to t = 1 and draw them
glMapGrid1f(30, 0.0, 1.0);
glEvalMesh1(GL_LINE_STRIP, 0, 30);

Less-than-nice properties of Bezier curves

Global control:
Moving any point has an effect on the entire curve

Complexity:
Typical curves may have hundreds of control points,
and evaluating high-degree Bezier curves is impractical

How can we get all the nice properties of
Bezier curves with local control and low
complexity if I have lots of control points?

8

An aside: curve continuity

A curve or surface is said to be Cn continuous at a
point t if its nth derivative at that point is continuous

not c0 continuous

c0 continuous
not c1 continuous

c1 continuous
hard to tell about
higher orders…

Cubic B-splines

Piecewise approximations of cubic polynomial
functions with C0, C1, and C2 continuity

Translation: stitch together a bunch of cubics
without weird artifacts at the joints

Cubic B-splines: The Big Picture

Segments of the curve are influenced by four
control points

First segment: cubic curve using p0, p1, p2, p3
Next segment: cubic curve using p1, p2, p3, p4
etc…

p0
p1

p2

p3

p4

p5
p6

Cubic B-splines: The Math [bspline.cpp]

Represent each segment as a standard cubic:

x(t) = a3t3 + a2t2 + a1t + a0
y(t) = b3t3 + b2t2 + b1t + b0

What are the coefficients? They should represent the
control points somehow...

After much derivation, we would get a common formula
that gives nice cubics:

a3 = (-xi-1 + 3xi - 3xi+1 + xi+2) / 6
a2 = (xi-1 - 2xi + xi+1) / 2
a1 = (-xi-1 + xi+1) / 2
a0 = (xi-1 + 4xi + xi+1) / 6

xi-1 xi+2 are the four points that control this segment

Cubic B-splines: Nice Properties

Local Control
Moving or adding a control point doesn’t affect the
whole curve

Low degree
Cubics are easy to compute and are used to
describe many complex curves

All the nice properties of Bezier curves

B-splines: Limitations

Not guaranteed to pass through any of the control
points (even the first and the last)
Still can’t express all shapes (e.g. circles)

We’ve only talked about uniform B splines
If there are 5 control cubics, each cubic determines 1/5 of
the overall curve

We’ve only talked about non-rational B-splines
If we put these in Bernstein form, our blending functions
would look a lot like the Bezier blending functions

We can fix the above problems with
non-uniform B-splines: arbitrary influence regions for each
point
rational B-splines: blending functions are ratios of
polynomials

The state of the art in OpenGL curves is NURBS (an
important buzzword): non-uniform rational B-splines
See your textbook for more information…

9

Review Quiz
(candy for correctness and brevity)

What is texture mapping?
What is billboarding?
What is bump mapping?
Why not use bump mapping all the time?
What is environment mapping?
Why not use environment mapping all the time?
Why do we usually define curves with control
points instead of with lots of vertices?
What’s a Bezier curve?
What’s a B-spline?
What advantages do B-splines have over Bezier
curves?

Going from curves to surfaces

Everything we’ve learned in 1D scales nicely to 2D
(from lines to surfaces)…
A Bezier patch is the 2D cousin of a Bezier curve
For a Bezier patch, we specify a grid of control
points that we want the surface to “look like”

Going from curves to surfaces
To find a point p(s,t) on a Bezier patch:

Generate the points p(s) for each of the four curves along
one axis
Use the four resulting points to as a new Bezier curve, and
generate the point p(t) along that curve

If I just knew how to evaluate p(u,v), how
could I render a Bezier patch in OpenGL?

Going from curves to surfaces
This was our Bezier curve:

Now let the control points themselves be functions of
another variable:

Specifically, let those functions be Bezier curves:

This gives us the function for a Bezier patch:

∑
=

=
L

k

L
kk tBptp

0
)()(

∑
=

=
L

k

L
kk tBsptsp

0
)()(),(

∑
=

=
M

j

M
jkjk sBpsp

0
,)()(

∑∑
==

=
L

k

L
k

M
jkj

M

j
tBsBptsp

0
,

0
)()(),(

Connecting Bezier patches

Just as we did with curves, we’ll often build
complex surfaces by piecing together Bezier
patches or B-spline patches

Continuity is not guaranteed with Bezier patches…
it’s often up to the designer or the modeling
software to make sure that corresponding points
have the same positions and derivatives

Bezier and B-spline surfaces: Examples

10

Bezier surfaces in OpenGL [bezmesh.cpp]

OpenGL evaluators take u and v values and control
points and generate vertices for you:

// GL, when I tell you to, evaluate a Bezier surface
// with order N and these control points…
glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4, 0, 1, 12, 4,

controlpoints);

// GL, please generate a vertex for the value t, using
// the Bezier curve I told you about previously
glEvalCoord2f(s,t);

// GL, please generate 400 points on my surface from
// u = 0 to u = 1 and v = 0 to v = 1 and draw them
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
glEvalMesh2(GL_FILL, 0, 20, 0, 20);

Outline for today

Advanced texture mapping
Texture coordinate generation
Curves and curved surfaces
The OpenGL pipeline revisited

Terminology: fragment

A fragment is an like a baby pixel that
might or might not grow up to be a pixel
(appear in the framebuffer)

Fragments are the output of the rasterizer

Why might a fragment generated by
the rasterizer not appear in the
framebuffer?

What data does OpenGL store with
each fragment?

The OpenGL Pipeline Revisited

vertex
data

display lists
vertex buffers

evaluators per-vertex
operations

rasterization

per-fragment
operations

framebuffer

texture
memory

pixel
data

clipping primitive
type

Next Time

Selection
Transparency

