Meshes
Modeling Objects

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker

July 12, 2005

Administrative blah-blah

o ppl was (virtually) handed back
o Exam is coming up
What do you need to know?
Submit questions!

o Submit video-break videos
o Only one late day on pp4

Outline for today

o Face culling

o Representing meshes
o Representing surfaces
o Drawing surfaces

Being stingy with our triangles

o When we draw Lego Man, we might
draw lots of triangles that end up
getting covered up

o It's not useful to draw the triangles
on the other side of Lego Man

Backface culling

o For any closed object, it’s not useful to
draw any triangles that face away from
the viewer

o Often want to eliminate backwards
triangles (that face away from the viewer)
before rasterization

o This is ‘backface culling’, and OpenGL can
do it for you

Which way does a triangle “face”?

o Intuitively, we want the side of the
triangle on the outside of our object to be
the front

o When I draw a triangle, OpenGL doesn’t
know about inside and outside

o Need a way to specify front and back of a
triangle

Which way does a triangle “face”?

o The order of vertices tells OpenGL which
way a triangle faces

o If I look at a triangle, the vertices appear
clockwise on one side, counter-clockwise
on the other

o In GL, the side ordered CCW is the front

3 3

VAN AN

2

Face normals
o Normal to a face: vector

perpendicular to the face, pointing
toward the front

How do we compute the normal
to this triangle?

/ 3

1

Which triangles “face the viewer"?

In eye coordinates, how do |
decide if a triangle faces the
viewer (plain English answer)?

Reminder: dot products

A e B = |A]||B|coso
A ¢ B = 0 — vectors are perpendicular

AeB>0— vectors "“mostly” point
the same way

Which triangles “face the viewer”?

N ¢ (z) > 0 — triangle faces camera
Ne(0,0,1)>0

(N,*0) + (N *0) + (N,*1) >0
N,>0

Culling in OpenGL [culling.cpp]

o Default state listed first:
glDisable(GL_CULL_FACE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glCullFace(GL_FRONT);
glFrontFace(GL_CCW);
glFrontFace(GL_CW);

When would I want culling
disabled?

Front-back in OpenGL

o Frontface/backface determination is
also used for lighting

o Backfaces can be a different color /
brightness / etc.

lllegal Polygons

o Can't define a normal for a non-planar
polygon

o Illegal to send OpenGL non-planar
polygons

o Even simple polygons can become non-
planar after transformations

o Polygons are generally tessellated by
OpenGL

Outline for today

o Face culling

o Representing meshes
o Representing surfaces
o Drawing surfaces

Representing models

o Models so far were made of
triangles or simple primitives that
we hard-coded in our programs

o “Real” models have too many
polygons to create manually

o Need a way to store and represent
objects

A mesh data structure: take one

struct vertex {
float x,y,z;

b

struct triangle {
vertex a,b,c;

struct object {
unsigned int nTriangles;
triangle* triangles;

b

What’s wrong with this approach?

How many vertices in a cube?

So what?

What are some disadvantages of
having redundant vertices?

A better mesh data structure

struct vertex {
float x,y,z;

b

struct triangle {
unsigned int a,b,c;

struct object {
unsigned int nVertices;
vertex* vertices;
unsigned int nTriangles;
triangle* triangles;

b

Meshes in OpenGL [meshes.cpp]

o Data structures like this are very common
o In fact, a very common way of sending
meshes to OpenGL is:

// Tell GL where to find vertices

glVertexPointer(3,GL_FLOAT,0,
myObject.vertices);

// Draw “indexed triangles”

glDrawElements(GL_TRIANGLES,
myObject.nTriangles,GL_UNSIGNED_INT,
myObject.triangles);

Meshes in OpenGL

o Most mesh file formats store vertices and
triangles in a format more or less like this
Popular formats: .3ds, .obj, .stl

o Most formats add a little more data to
each vertex:
Surface normals
Color information
Texture coordinates
These topics make up the next few classes in
CS148

Outline for today

o Face culling

o Representing meshes
o Representing surfaces
o Drawing surfaces

When aren’t meshes quite right?

Which of these objects could be
represented more efficiently
with another approach?

Why not always store our objects as
meshes?

o Space

o Level of detail

o Modeling

o Non-polygon renderers

o OpenGL (mostly) only knows about
triangles and vertices, so we're leaving
the GL universe for a bit...

Another approach: object primitives

oSpheres
oCubes

o Other objects I can easily
parameterize

A file format with object primitives

Object LegoMan {
// numbers are arbitrary
sphere head(0.2,0.3,0.4,0.1);
cube body(0.2,0.5,0.3,0.2);
triMesh hand {
vertices 0.4,0.3,0.5,0.2...
triangles 1,2,3,2,3,4...
¥
b

o In fact, VRML - a popular model format -
is not all that far from this

Still many objects we can’t compactly
represent...

o In particular, we'd like to be able to
efficiently represent curves in space

o ...just you can efficiently represent a
parabola by writing y = x2, without
writing down 100000 points on the
parabola.

Parametric Surfaces

o Think of an object’s “skin” as a 2D surface

o Use two variables (u,v) to tell me where I
am on the surface

o A position function p(u,v) generates points
in space
p(u,v) = (X(u,v), Y(u,v), Z(u,v))

o In vector notation:

p(u,v) = X(u,v)i + Y(u,v)j + Z(u,v)k

Parametric Surfaces

o u and v mean different things for different
objects

o A parametric surface gives back different
points for different (u,v) values

o A cylinder might interpret (u,v) as (h,0)

o A plane might interpret (u,v) as (x,y)

o What might (u,v) represent for a
sphere?

Defining a Parametric Plane

o I can specify a plane with a point c and any
two vectors a,b that live on the plane

o How can I put this in parametric form?

o Define (u,v) = (0,0) as the point c

o Can represent any vector in 2D as a
combination of two non-collinear vectors

o So our whole plane is:

p(u,v) = ua + vb

Planar Patches

o Could represent the whole plane by letting
u and v range from -oo to +o

o Often we want to represent a specific chunk
of a plane, e.g. the front of Lego Man

o We often define a and b so that letting u
and v go from 0 to 1 will give us the object
we want

o This restricted piece of a parametric surface
is called a patch

Planar Patches

u | v corner
010 c
0|1 c+b
1,0 c+a
1)1 c+a+b

Other Patches

o A sphere might interpret (u,v) as (0,p)

o A cylinder might interpret (u,v) as (h,0)

o This might be represented as a spherical
patch (restricted range of (6,p)) and a
cylindrical patch (restricted range of (h,0))

Other surface types
o Ruled surfaces

o Surfaces of revolution
o Quadric surfaces

Aside: parametric Line Segment

o If we want a line segment from pO to p1,
we might parameterize it as:

p(v) =(1-v)p0 + vpl

...only need one parameter.

Ruled Surfaces

o A “ruled surface” is made of up many
straight lines

o Or one straight line moving and rotating
through space

Ruled Surfaces
o How do we parameterize a ruled surface?
p(u,v) = (1 - v)pO(u) + vpl(u)

o Looks similar to the line equation, but
has an extra parameter...

What do u and v represent?

Ruled Surfaces: Example 1

What’s unique about this ruled
surface?

p(u,v) = pO(u) + vd

What surface does this define if
pO(u) = (R cos(u), R sin(u), 0)?

Ruled Surfaces: Example 2

What’s unique about this ruled
surface?

p(u,v) = (1-v)p0 + vpl(u)

What surface does this define if
pl(u) = (R cos(u), R sin(u), 0)?

Ruled Surfaces: Example 3
What ruled surface does this represent?

p = cos(u) + v*cos(u/2) * cos(u),
sin(u)+v*cos(u/2)*sin(u),
sin(u/2);

I'm kidding. Don't try to figure it out.

Surfaces of Revolution

o A “surface of revolution” results from
sweeping a planar curve around an axis

What do | get by sweeping the following
curves around the y axis?

Parameterizing surfaces of revolution

o The curve itself - the “profile” of the surface
- is a 1-D parameterized curve x(u),y(u)

o The second parameter v swings this curve
around an axis

p(u,v) = [x(u) cos(v) , y(u) , -x(u) sin(v)]

u=1

Profile

Are surfaces of revolution useful?

o Very popular in modeling packages for
going from 2D --> 3D

Quadrics

o Surfaces defined by an algebraic equation
of degree 2

o It turns out any quadric can be transformed
into a very small handful of surfaces, so
knowing how to draw a small set of
surfaces could let us represent a lot of
objects

Quadrics

Ellipsoid =

Elliptic cone | 5+<5-5=0

Hyperboloid | z2, 0% £ _,
of one sheet | = & ¢

Quadrics

Hypberbolic ﬁ,ﬁ=£ g
paraboloid B2 42 €

Elliptic 224z @
paraboloid a2 B2 e

Hyperboloid | z= _x_»*_,
of two sheets | «

Outline for today

o Face culling

o Representing meshes
o Representing surfaces
o Drawing surfaces

Drawing parametric surfaces

o Imagine you have a black box that spits out
points p(u,v), and you want to draw the
surface for the range u=0:1, v=0:1

o Note that points close to each other in (u,v)
should be close to each other on the surface

How would we draw a parametric
surface as quads?

What'’s (slightly) wrong with
this approach?

Drawing parametric surfaces

o Often need surface normals to draw things
nicely in OpenGL (details coming soon)

How would we compute the normal
to a parametric surface at (u,v)?

n(u0, v0) = ((ap/au) x (3p/av))

Drawing surfaces of revolution

o Let’s say we wanted a wireframe model of a
surface of revolution

o Can draw this as “parallels” (circles in the
xy-plane) and “meridians” (copies of the
profile, rotated around the y axis)

o For fun at home: sketch an OpenGL routine
to do this given (x,y) = profile(u)

Drawing quadrics
o GL has support for some basic quadrics
GLUquadricObj* gobj = gluNewQuadric();

gluQuadricDrawStyle(qobj, GLU_FILL);
gluSphere(qobj, 1.0, 10, 7);

Next time

o Color
o Lighting and shading

