
1

Meshes
Modeling Objects

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
July 12, 2005

Administrative blah-blah

pp1 was (virtually) handed back
Exam is coming up

What do you need to know?
Submit questions!

Submit video-break videos
Only one late day on pp4

Outline for today

Face culling
Representing meshes
Representing surfaces
Drawing surfaces

Being stingy with our triangles

When we draw Lego Man, we might
draw lots of triangles that end up
getting covered up
It’s not useful to draw the triangles
on the other side of Lego Man

Backface culling

For any closed object, it’s not useful to
draw any triangles that face away from
the viewer
Often want to eliminate backwards
triangles (that face away from the viewer)
before rasterization
This is ‘backface culling’, and OpenGL can
do it for you

Which way does a triangle “face”?

Intuitively, we want the side of the
triangle on the outside of our object to be
the front
When I draw a triangle, OpenGL doesn’t
know about inside and outside
Need a way to specify front and back of a
triangle

2

Which way does a triangle “face”?

The order of vertices tells OpenGL which
way a triangle faces
If I look at a triangle, the vertices appear
clockwise on one side, counter-clockwise
on the other
In GL, the side ordered CCW is the front

1

3

2 1

3

2

Face normals

Normal to a face: vector
perpendicular to the face, pointing
toward the front

How do we compute the normal
to this triangle?

1

3

2

Which triangles “face the viewer”?

In eye coordinates, how do I
decide if a triangle faces the
viewer (plain English answer)?

-z
1 2

3
N

Reminder: dot products

A • B = |A||B|cosθ
A • B = 0 → vectors are perpendicular
A • B > 0 → vectors “mostly” point

the same way

θ

Which triangles “face the viewer”?

N • (z) > 0 → triangle faces camera
N • (0,0,1) > 0
(Nx*0) + (Ny*0) + (Nz*1) > 0
Nz > 0

-z
1 2

3
N

Culling in OpenGL [culling.cpp]

Default state listed first:
glDisable(GL_CULL_FACE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glCullFace(GL_FRONT);
glFrontFace(GL_CCW);
glFrontFace(GL_CW);

When would I want culling
disabled?

3

Front-back in OpenGL

Frontface/backface determination is
also used for lighting
Backfaces can be a different color /
brightness / etc.

Illegal Polygons

Can’t define a normal for a non-planar
polygon
Illegal to send OpenGL non-planar
polygons
Even simple polygons can become non-
planar after transformations
Polygons are generally tessellated by
OpenGL

Outline for today

Face culling
Representing meshes
Representing surfaces
Drawing surfaces

Representing models

Models so far were made of
triangles or simple primitives that
we hard-coded in our programs
“Real” models have too many
polygons to create manually
Need a way to store and represent
objects

A mesh data structure: take one

struct vertex {
float x,y,z;

}
struct triangle {

vertex a,b,c;
}
struct object {

unsigned int nTriangles;
triangle* triangles;

}

What’s wrong with this approach?

How many vertices in a cube?

4

So what?

What are some disadvantages of
having redundant vertices?

A better mesh data structure

struct vertex {
float x,y,z;

}
struct triangle {

unsigned int a,b,c;
}
struct object {

unsigned int nVertices;
vertex* vertices;
unsigned int nTriangles;
triangle* triangles;

}

Meshes in OpenGL [meshes.cpp]

Data structures like this are very common
In fact, a very common way of sending
meshes to OpenGL is:

// Tell GL where to find vertices
glVertexPointer(3,GL_FLOAT,0,

myObject.vertices);

// Draw “indexed triangles”
glDrawElements(GL_TRIANGLES,

myObject.nTriangles,GL_UNSIGNED_INT,
myObject.triangles);

Meshes in OpenGL

Most mesh file formats store vertices and
triangles in a format more or less like this

Popular formats: .3ds, .obj, .stl

Most formats add a little more data to
each vertex:

Surface normals
Color information
Texture coordinates
These topics make up the next few classes in
CS148

Outline for today

Face culling
Representing meshes
Representing surfaces
Drawing surfaces

When aren’t meshes quite right?

Which of these objects could be
represented more efficiently
with another approach?

5

Why not always store our objects as
meshes?

Space
Level of detail
Modeling
Non-polygon renderers

OpenGL (mostly) only knows about
triangles and vertices, so we’re leaving
the GL universe for a bit...

Another approach: object primitives

Spheres
Cubes
Other objects I can easily
parameterize

A file format with object primitives
Object LegoMan {

// numbers are arbitrary
sphere head(0.2,0.3,0.4,0.1);
cube body(0.2,0.5,0.3,0.2);
triMesh hand {

vertices 0.4,0.3,0.5,0.2...
triangles 1,2,3,2,3,4...

}
}

In fact, VRML – a popular model format –
is not all that far from this

Still many objects we can’t compactly
represent...

In particular, we’d like to be able to
efficiently represent curves in space
...just you can efficiently represent a
parabola by writing y = x2, without
writing down 100000 points on the
parabola.

Parametric Surfaces

Think of an object’s “skin” as a 2D surface
Use two variables (u,v) to tell me where I
am on the surface
A position function p(u,v) generates points
in space

p(u,v) = (X(u,v), Y(u,v), Z(u,v))

In vector notation:

p(u,v) = X(u,v)i + Y(u,v)j + Z(u,v)k

Parametric Surfaces

u and v mean different things for different
objects
A parametric surface gives back different
points for different (u,v) values
A cylinder might interpret (u,v) as (h,θ)
A plane might interpret (u,v) as (x,y)
What might (u,v) represent for a
sphere?

6

Defining a Parametric Plane

I can specify a plane with a point c and any
two vectors a,b that live on the plane
How can I put this in parametric form?
Define (u,v) = (0,0) as the point c
Can represent any vector in 2D as a
combination of two non-collinear vectors
So our whole plane is:

p(u,v) = ua + vb

Planar Patches

Could represent the whole plane by letting
u and v range from -∞ to +∞
Often we want to represent a specific chunk
of a plane, e.g. the front of Lego Man
We often define a and b so that letting u
and v go from 0 to 1 will give us the object
we want
This restricted piece of a parametric surface
is called a patch

Planar Patches

c+a+b11

c+a01

c+b10

c00

cornervu

Other Patches

A sphere might interpret (u,v) as (θ,ρ)
A cylinder might interpret (u,v) as (h,θ)
This might be represented as a spherical
patch (restricted range of (θ,ρ)) and a
cylindrical patch (restricted range of (h,θ))

Other surface types

Ruled surfaces
Surfaces of revolution
Quadric surfaces

Aside: parametric Line Segment

If we want a line segment from p0 to p1,
we might parameterize it as:

p(v) = (1 - v)p0 + vp1

...only need one parameter.

7

Ruled Surfaces

A “ruled surface” is made of up many
straight lines
Or one straight line moving and rotating
through space

Ruled Surfaces

How do we parameterize a ruled surface?

p(u,v) = (1 - v)p0(u) + vp1(u)

Looks similar to the line equation, but
has an extra parameter...

What do u and v represent?

Ruled Surfaces: Example 1

What’s unique about this ruled
surface?

p(u,v) = p0(u) + vd

What surface does this define if
p0(u) = (R cos(u), R sin(u), 0)?

Ruled Surfaces: Example 2

What’s unique about this ruled
surface?

p(u,v) = (1-v)p0 + vp1(u)

What surface does this define if
p1(u) = (R cos(u), R sin(u), 0)?

Ruled Surfaces: Example 3

What ruled surface does this represent?

p = cos(u) + v*cos(u/2) * cos(u),
sin(u)+v*cos(u/2)*sin(u),
sin(u/2);

I’m kidding. Don’t try to figure it out.

Surfaces of Revolution

A “surface of revolution” results from
sweeping a planar curve around an axis

What do I get by sweeping the following
curves around the y axis?

8

Parameterizing surfaces of revolution

The curve itself – the “profile” of the surface
– is a 1-D parameterized curve x(u),y(u)
The second parameter v swings this curve
around an axis

p(u,v) = [x(u) cos(v) , y(u) , -x(u) sin(v)]

u=0

u=1

Are surfaces of revolution useful?

Very popular in modeling packages for
going from 2D --> 3D

Quadrics

Surfaces defined by an algebraic equation
of degree 2
It turns out any quadric can be transformed
into a very small handful of surfaces, so
knowing how to draw a small set of
surfaces could let us represent a lot of
objects

Quadrics

Hyperboloid
of one sheet

Elliptic cone

Ellipsoid

Quadrics

Hyperboloid
of two sheets

Elliptic
paraboloid

Hypberbolic
paraboloid

Outline for today

Face culling
Representing meshes
Representing surfaces
Drawing surfaces

9

Drawing parametric surfaces

Imagine you have a black box that spits out
points p(u,v), and you want to draw the
surface for the range u=0:1, v=0:1
Note that points close to each other in (u,v)
should be close to each other on the surface

How would we draw a parametric
surface as quads?

What’s (slightly) wrong with
this approach?

Drawing parametric surfaces

Often need surface normals to draw things
nicely in OpenGL (details coming soon)

How would we compute the normal
to a parametric surface at (u,v)?

n(u0, v0) = ((∂p/∂u) x (∂p/∂v))

Drawing surfaces of revolution

Let’s say we wanted a wireframe model of a
surface of revolution
Can draw this as “parallels” (circles in the
xy-plane) and “meridians” (copies of the
profile, rotated around the y axis)

For fun at home: sketch an OpenGL routine
to do this given (x,y) = profile(u)

Drawing quadrics

GL has support for some basic quadrics

GLUquadricObj* qobj = gluNewQuadric();
gluQuadricDrawStyle(qobj, GLU_FILL);
gluSphere(qobj, 1.0, 10, 7);

Next time

Color
Lighting and shading

