
1

3D Viewing
Camera Transformations

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
July 7, 2005

Outline for today

Overview: 3D 2D
Viewing
Video break
Projection
The depth buffer

OpenGL in a nutshell
We can build primitives from vertices
We can build objects from primitives
We usually model objects in a “convenient
coordinate frame”

E.g. drawSqare(), glutSolidSphere()

OpenGL magic

pixelsobject
coordinates

What have we done so far?

We know how to take all points in our
object and put them in a global frame
Objects may have their own reference
frames, but using GL transformations,
every vertex ends up in the global frame

modeling
transformation

world
coordinates

object
coordinates

What have we done so far?

We know how to turn primitives into
pixels if we have their pixel
locations

rasterization

pixelswindow
coordinates

Working backwards

We learned (almost) how to convert OpenGL
coordinates into window coordinates:

glViewport(x,y,w,h);

What does glViewport() really do?

From the documentation:

Specifies the affine transformation of x
and y from normalized device coordinates
to window coordinates.

What the $*%^ are normalized device
coordinates?

2

Normalized Device Coordinates
On any computer in the world, with any
window size, OpenGL maps the range
[-1,1] to the window

At the end of all my transformations:
(0,0) will be the center of the window,
(1,1) will be at the upper-right

If I want a vertex to show up at the center
of the screen, my transformations had
better transform it to (0,0,z).

The Viewport Transformation
We already know how to turn NDC into
window coordinates
Just call glViewPort()

What is the transformation set up by
glViewport(x,y,w,h)?

viewport
transformation

window
coordinates

1

1

-1
-1

normalized device
coordinates

What’s left?

modeling
transformation

world
coordinates

object
coordinates

rasterization

pixels

viewport
transformation

window coordinates

1

1

-1

-1
normalized device

coordinates

?

Outline for today

Overview: 3D 2D
Viewing
Video break
Projection
The depth buffer

Viewing

I have a world with objects in it
Useful to think of a virtual camera
somewhere in that world, looking at
whatever I want the user to see

Eye Coordinates

…but GL doesn’t have a
setCameraPosition() function*

The OpenGL camera is always
sitting at the origin and looking
straight down the –z axis, with y
pointed up
We’ll call this coordinate system
“eye coordinates”

3

The Viewing Transformation

In order to define our own camera,
we’ll apply a transformation that
moves everything into view
In other words, we’ll translate our
world coordinates into eye
coordinates
This is the “viewing transformation”,
and it’s equivalent to placing our
virtual camera in our virtual world

The ModelView Matrix Revisited

To do this in OpenGL, the very first
transform to go onto our modelview
stack will be the viewing transform
When you fire up project 2, the
current coordinate frame is already
world coordinates, because we
defined a viewing transform for you
The modelview matrix encompasses
the modeling and viewing
transformations

Defining a camera

Let’s assume we want the camera to
be

Sitting at point E (eye) in world coords
Looking at point L (look) in world coords

Does this define a unique coordinate
system?
Also need an ‘up vector’ that tells us
how the camera is oriented around
its “look axis”

Building a viewing matrix
So let’s think of our job as
implementing the function:

matrix buildViewMatrix(
point E,
point L,
vector up);

E, L, and up are in the world frame…

How do we build a viewing matrix?
The viewing matrix maps points in
the world frame to points in the
camera frame
Two steps:

Apply a translation to put their origins
at the same place
Apply a rotation to make their axes line
up

Translation First
We’re good at translation…

What translation do I apply to put the
camera at point (ex, ey, ez)?

To “move the camera backward”, we would
move the whole world forward…

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

1000
100
010
001

ez
ey
ex OpenGL, please translate

all future vertices by
(-ex,-ey,-ez)

4

Now rotation
Now the current origin is at the
camera frame origin, but I need to
align the axes…

Now rotation

What vector in the world frame should match the z
axis in the camera frame?

What vector in the world frame should match the y
axis in the camera frame?

What vector in the world frame should match the x
axis in the camera frame?

matrix buildViewMatrix(
point E,
point L,
vector up);

The magic vectors

The z axis: E - L
The camera always looks down its -z
axis, and we want to look from E to L

The y axis: up
The camera is always oriented with y
pointing up

The x axis: up x (E-L)

All three vectors are
perpendicular…

The secrets of rotation matrices

Rotation matrices have some
amazing properties…

All columns are unit vectors!
The columns of a rotation matrix define
the vectors to which it rotates the
coordinate axes!
RT = R-1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
0
1

333231

232221

131211

31

21

11

rrr
rrr
rrr

r
r
r

WOW!

Hand-made rotation matrices

If I want a rotation matrix that
maps the x axis to the unit
vector(a,b,c), what should the first
column look like?

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
0
1

3332

2322

1312

rrc
rrb
rra

c
b
a

Hand-made rotation matrices

If I wanted to…
Rotate the z axis to the vector E-L
Rotate the y axis to the vector up
Rotate the x axis to the vector up x (E-L)

Define unit vectors:
f = (E-L) / |E-L|
u = up / |up|
s = u x f

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z
y
x

fus
fus
fus

z
y
x

zzz

yyy

xxx

'
'
'

5

But really that’s not what I want…

I have three unit vectors (f, u, and
s) and I want to rotate them into
the x, y, and z axes

What matrix will rotate f, u, and
s into the x, y, and z axes?

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==−

zyx

zyx

zyx
T

zzz

yyy

xxx
T

fff
uuu
sss

fus
fus
fus

RR 1

Finally, the viewing matrix…

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11000
100
010
001

1000
0
0
0

1
z

y

x

z

y

x

zyx

zyx

zyx

z

y

x

pworld
pworld
pworld

e
e
e

fff
uuu
sss

peye
peye
peye

Reminder: all this work was to
transform points in world
coordinates to points in eye
coordinates

Viewing in OpenGL [cube.cpp]

gluLookAt() does everything we just
talked about

Multiplies the current transformation by
the matrix we just built
Usually the current matrix is identity,
since this is usually the first thing to
happen on the modelview stack

We even used the same notation as
the gluLookAt() docs
This is how you usually position a
camera in OpenGL

What’s left?

modeling
transformation

world
coordinates

object
coordinates

rasterization

viewport
transformation

window coordinates

1

1

-1

-1
normalized device

coordinates

viewing
transformation

eye coordinates

pixels

?

Video break: Final Fantasy Trailer

CG pipeline for movies:
Modeling
Animation / MoCap / Simulation
Rendering
Compositing

Outline for today

Overview: 3D 2D
Viewing
Video break
Projection
The depth buffer

6

What have we done so far?

All of our coordinates have been
transformed into eye coordinates
(0,0,0) is at the center of my world, the -
z axis points away from me
Still need to map 3D eye coordinates to
2D normalized device coordinates

1

1

-1

-1
normalized device

coordinates
eye coordinates

?

Projection

Turning 3D eye coordinates into
normalized device coordinates
“Projecting” the world onto a 2D
image plane

Types of projection

perspectiveorthographic
(parallel)

Orthographic projection

Squeeze a certain range of what’s in
front of the camera into NDC
without any distortion
OpenGL will clip away everything
outside x = [-1,1], y = [-1,1]
What about z?

OpenGL will also clip away everything
outside the range z = [-1,1]
Near and far “clip planes”: the closest
and farthest things that we want to see

Orthographic projection

Can think of orthographic projection
as defining a view volume that’s
shaped like a box

Z=0
Z<0

Z=-1
Z=-zNear

Z=1
Z=-zFar

(x,y) = (1,1)
(x,y) = (top,right)

NDC’s
Eye coordinates

Orthographic projection in GL

glOrtho(left,right,bottom,top,
zNear,zFar)
From the docs:

multiply the current matrix with an
orthographic matrix

What can you tell
me about this
transformation
just by looking at
it?

7

Orthographic projection in GL

Remember gluOrtho2D?

From the docs:

The gluOrtho2D function defines a 2-
D orthographic projection matrix.
This is equivalent to calling
glOrtho with near = -1 and far = 1.

Perspective projection

Same deal... need to get eye
coordinates into NDC’s
Stuff that’s further away should
look smaller
E.g. a point at (1,1,-20) in eye
coordinates should end up closer to
the z-axis in NDC’s than a point at
(1,1,-5)

Perspective projection

What is the shape of our view
volume in a perspective projection?
It’s a frustum...
What the $%^! is a frustum?

Perspective projection

We need a matrix that will divide x
and y by a value that depends on z
Can’t express this with a typical
matrix multiplication...
If only we had some way of dividing
each point by a different value...

The perspective projection matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+

10100
00

00
00

)(
)(
)(

eye

eye

eye

eye

eye

eye

eye

z
y
x

tzsz
tysy
txsx

z
tzzsz
tyysy
tzxsx

Holy non-zero homogeneous
coordinates, batman!

bigger z bigger w
smaller x and y (after division by w)

Perspective projection in OpenGL

glFrustum(left, right, bottom, top,
near, far);

From the docs: multiply the current
matrix by a perspective matrix

gluPerspective(fovy, aspect, near,
far)

From the docs: set up a perspective
projection matrix
Takes a field-of-view angle in degrees
and an aspect ratio (y/x)

8

Summary: Camera transforms in GL
[cube.cpp]

A typical 3D program sets up a perspective
projection when it first starts up:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0,1.5,0.2,10.0);
glMatrixMode(GL_MODELVIEW);

A typical program sets up the camera every
frame:

glLoadIdentity();
gluLookAt(ex,ey,ez,lookx,looky,lookz,

upx,upy,upz);

// Do all my rendering...

The GL transformation pipeline

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

w
z
y
x

modelview
matrix

projection
matrix

clipping

division
by w

viewport
transform

object
coordinates

eye
coordinates

clip
coordinates

NDC’s

window
coordinates

world coordinates
(in our imagination)

Outline for today

Overview: 3D 2D
Viewing
Video break
Projection
The depth buffer

What about z?
After all this work, we’re going to
get vertices in window coordinates,
then rasterize them to get pixels
What happens when two primitives
rasterize to the same pixel location?
Intuitively, we want the pixel that
was closer to the eye to get drawn,
but not the other one

GL’s solution: the depth buffer

OpenGL keeps an extra array of
floats, exactly the same size as the
frame buffer
This separate buffer stores the NDC
z value for every pixel in the
framebuffer

The depth test

I’m busy rasterizing a triangle, and
I decide to put a pixel at location
(x,y) (just like pp1 in CS148)
Before I sent a new color to the
framebuffer, I say “is the new
pixel’s z-value less than the value in
the depth buffer”?
If not, I cull (throw away) this pixel
because it “failed the depth test”

9

Interacting with the GL depth buffer

You almost never have to work with
the depth buffer directly... your only
job is clearing it after every frame

glClear(GL_DEPTH_BUFFER_BIT |
GL_COLOR_BUFFER_BIT);

In NDC’s, what value should
“clearing” the depth buffer set
every pixel’s depth value to?

Interacting with the GL depth buffer

You do need to turn the depth test
on at the beginning of your
program:

glEnable(GL_DEPTH_TEST);

When might I want to turn depth-
testing off?

Interacting with the GL depth buffer
[cube.cpp] [broken tobor example]

What happens if I turn depth testing off
for a typical scene?

What happens if I turn off the depth-
buffer-clear for an entire scene?

What happens if I turn off the color-
buffer-clear for an entire scene?

Next Time

Polygonal meshes
Surface normals

