]
3D Transforms L

Transformations in OpenGL

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker

July 5, 2005

Answering old questions

o What happens if you don't update the
framebuffer often enough?

Outline for today

o 3D Transformations

o Transformations in OpenGL
o Video Break

o Transform Hierarchies

o Project 2

Homework 1 is due tonight

o Check the FAQ

o Compile and test on Linux

o Take advantage of extra credit
o Make pretty pictures

Answering old questions

o What does it mean to have a homogeneous
coordinate other than 1.0?

scale
x| [sx 0 0]x
ey
wi |0 0 1w

o If (w==0), which transformation(s) still
“work” (affect x and y)?

o (w==0) defines an “ideal point” /
point at infinity / direction vector

OpenGL / CS148 Conventions

o Positive z-axis points
out of the monitor

o Counterclockwise
rotation is positive
(right-hand rule)

Review: Definition of Transformation

o A transformation is a function of a
point that returns another point

o When applied to every point in an
object, it can change the position,
size, or shape of the object

o We do our math using the point-
based interpretation, but we're
really interested in moving objects

Review: Homogeneous Coordinates

o Writing every point (x,y) as a triple
(x,y,w) let us...

Why did we write points in
homogeneous coordinates?

Self-plagiarism:

Homogeneous coordinates in 3D

o Write a point (x,y,z) as a quadlet:
[xh,yh,zh,w]
..where xh = x*w, yh = y*w, zh = z*w

o w is called the *homogeneous coordinate’
and is usually equal to one

o Whenw =1, x =xh,y =yh,and z = zh

3D Translation

X' 1 0 0 tx|x X+ X
y| 101 0 tyjy| |ty+y
77100 1 tz)z| |tz+z
1 0 00 1|12 1

w -

What were the signs of tx, ty, and tz?

3D Scale

X' sx 0 0 O0fx (sx)x
y' _ 0 sy 0 Oy _ (sy)y
z 0 0 sz 0fz (sz)z
1 0 0 0 11 1

What were the signs of sx, sy, and sz?

Scaling with a fixed point...

o Same as in 2D:
Translate the fixed point to the origin
Scale

Translate the fixed point back where it
belongs

3D Rotation

o In 2D, a rotation transformation
rotated a point around the origin

o In 3D, saying “rotate a point around
the origin” doesn’t define a unique
transformation

3D Rotation

o 3D rotation is defined by an axis of
rotation (a 3d-vector) and a
rotation angle 6

What were the angles and axes of
rotation on the previous slide?

What was the axis of rotation in
the previous lecture?

3D Rotation

o So rotation around the z-axis should look
familiar:

x| [cos® -sing 0 Ofx Xcosé—ysing
y sing cosd 0 Ofy Xsin @+ ycosé
z= 0 0 1 0]z| z

1] | o 0 0 1)1 1

What coordinate shouldn’t change if
I rotate around the x-axis instead?

Rotation around the x and y axes

] [1 0 0 0fx X
x-axis y'| |0 cos@ -sin@ Ofy| |ycos@-zsing
7| |0 sing cos® 0z ysin@+zcosé
1] [0 o 0 11 1
[x] [cos® 0 sing 0] x xcos@+zsind |
Ayl o 1 0 ofyl y
Y=aXIS | 07| Jsino 0 coso 0] z||-xsing+zcosd
1] [o o o 11 1

Looks a lot like the z-axis rotation, right?

Rotation around an arbitrary vector

o Math is a big mess, but there is a
magic formula

o OpenGL handles this for you
(coming soon to a slide near you)

o But OpenGL only knows how to
rotate around an arbitrary vector
that passes through the origin...

Rotation around an arbitrary line

How can we rotate around an
arbitrary line?

Review: what do our transformations
“look like"?

norr o0 sx 0 0 0 10 0 &
L r, 1, 0 0 sy 0 O 010ty
n L0 0 0 sz O 001 tz
0 0 01 0 0 0 1 0001

rls rls rls
ki rl: s
k/s tl: s

[. = =

Important CG Terminology:
Affine vs. Projective Transforms

o All the transforms we have looked
at leave w alone

o This defines the class of affine
transforms

o Parallel lines remain parallel

o Projective transforms can modify w
and don't preserve parallelism

o Affine transforms are a subset of
projective transforms

Reminder: Composite Transforms

o Any series of transformations can
be multiplied together and
represented as a single matrix

o Works in 3D just like it did in 2D...

p’=.p=[RXTXS}P

Three transforms are compressed into one matrix

Outline for today

o 3D Transformations

o Transformations in OpenGL
o Video Break

o Transform Hierarchies

o Project 2

Transformations in OpenGL

o Important concept: GL maintains a
“current” transformation matrix that
will transform every vertex you
send it

o Just like a “current” drawing color

o Defaults to the identity matrix

Translation in OpenGL

glTranslatef(x,y,z);

Dear OpenGd,

Please trandlate every verter 7 cend you by (1.9.3) from

nour o,

Thanko3((a million,a million. a million),
Dan

What does this really do?

o From the glTranslate docs:

Multiply the current matrix by a
translation matrix.

o If the current transformation matrix is C,
the new matrix will be:

C=C*T

o GL transforms post-multiply the current
matrix (the new matrix goes on the right
of the current matrix)

Rotations and scales

glRotatef(angle, x, y, z);

o Multiply the current matrix by a
rotation matrix

o Rotate all subsequent points [angle]
degrees around the axis (x,y,z)
(which passes through the origin)

glScalef(x,y,z);

o The same deal...

Where will this point end up?

glTranslatef(1.0,0,0);
glScalef(2.0,2.0,2.0);
glBegin(GL_POINTS);

glVertex3d(1.0,1.0,1.0);
glEnd();

P’ =| Ident X| T X| S P

Where will this point end up?

glScalef(2.0,2.0,2.0);
glTranslatef(1.0,0,0);
glBegin(GL_POINTS);

glVertex3d(1.0,1.0,1.0);
glEnd();

P’ =| Ident X S X T P

Summary [transforms.cpp]

o OpenGL translations get applied in
reverse order relative to the order in
which they were specified

One more... where will this pt end up?

glRotatef(90,0,0,1);
glTranslatef(-1.0,0,0);
glBegin(GL_POINTS);

glVertex3d(1.0,0.0,0.0);
glEnd();

Okay ONE more... what if I switch R and T?

Un-doing transformations

glTranslatef(x,y,z);
o Undo with glTranslatef(-x,-y,-z);

glRotatef(angle, x, y, z);
o Undo with ???

glScalef(x,y,z);
o Undo with ???

Un-doing transformations

o Matrix interpretation: putting the matrix T-* on
the right side of the composite transform

C = (T4R;S4R,T,)... and we want to undo T,
C'=C*T, = (T,R;SR,T,)T,*!

= (T{R;S;R)(T,T2)

(TIRISIRZ)(I)

(TiR;S4Ry)

o Can only undo the most recent transform

o If you want to undo multiple transforms, you
need to undo them in reverse order

o This is not how you usually undo
transformations

Outline for today

o 3D Transformations

o Transformations in OpenGL
o Video Break

o Transform Hierarchies

o Project 2

Video break: Unreal Engine 3 Demo

o Demonstrates the state-of-the art in
everything that’s hard about
graphics for video games:

Physics
Lighting
Modeling and animation

Outline for today

o 3D Transformations

o Transformations in OpenGL
o Video Break

o Transform Hierarchies

o Project 2

A square centered at the origin

void drawSqare() {
glBegin(GL_QUADS);
glVertex3f(-0.5,-0.5,0);
glVertex3f(0.5,-0.5,0);
glVertex3f(0.5, 0.5,0);
glVertex3f(-0.5, 0.5,0);
glEnd();

b

A square centered at the origin?

glTranslatef(-1.0,0,0);
drawSquare();

Where will the square end up?

o Calling gITranslate() moves our
origin

o Transformations establish a
new coordinate frame

Coordinate Frames

o Can think of every call to glVertex
as drawing a vertex relative to the
origin

o But transformations move the
origin / frame of reference around

o Functions like glutSolidSphere() or
our drawSquare() draw objects
centered at the current origin

Coordinate Frames

o All transformations are also defined in the current
reference frame

glTranslatef(1,0,0)

Translation moves all subsequent vertices to the
right

glRotatef(90,0,0,1)
glTranslatef(1,0,0)
Translation moves all subsequent vertices up (+y)

Translation is applied in the rotated coordinate
frame

Coordinate Frames

The current transformation matrix
defines the transformation from
the current reference frame to the
global reference frame.

}ﬁ
/L./ T*R*S «/

Transformation Hierarchies

o Very common paradigm in 3D
graphics:
Object sets up new reference frame
(translation + rotation) and draws itself
Tells “children” to draw themselves
Erases his transformations so the

o reference frame is the way he found it
torso
head arm H o4 tA
e L I~
wrist
hand

Transformation Hierarchies

What would happen if the head forgot
to cancel his reference frame?

g
e -@

head -
g wrist @
hand L

Transformation Hierarchies in GL

o GL provides a mechanism to simplify transform
hierarchies

o)

Actually maintains a stack of transformations,
where the top one is the current transformation

o To create a new local frame, I push the current
matrix onto the stack and modify it

o To restore a more global frame, I pop the top of
the stack

Transformation Hierarchies in GL

o Useful functions:
glPushMatrix();
glPopMatrix();
glLoadIdentity();

o Typical GL object [planetup.cpp]:
glPushMatrix();
// Do some transforms
// Draw myself (maybe by calling a display list)
// Draw my children
glPopMatrix();

Matrix Modes

o GL actually maintains two stacks and
two “current” matrices

o glMatrixMode controls which stack
you’re working with right now

gIMatrixMode(GL_PROJECTION);
gIMatrixMode(GL_MODELVIEW);

o Projection matrix is applied last (on the
left)

Matrix Modes: What's the Deal?

o Rotations / translations / scales almost
always go on the modelview matrix

o Almost always only use the projection
matrix for perspective projection, which
we’ll learn about next week.

o Typical convention: if you set the matrix
mode to GL_PROJECTION, set it back to
GL_MODELVIEW when you're done

o A typical program rarely touches the
projection matrix more than once

Outline for today

o 3D Transformations

o Transformations in OpenGL
o Video Break

o Transform Hierarchies

o Project 2

Project 2 Preview

o Project 2: Tobor and Rubix

o Look at the planetup.cpp example
o Start early; it’s bigger than pp1!
o Talk to each other

o The next project will (optionally) be
a group project....

