
1

3D Transforms
Transformations in OpenGL

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
July 5, 2005

Homework 1 is due tonight

Check the FAQ
Compile and test on Linux
Take advantage of extra credit
Make pretty pictures

Answering old questions

What happens if you don’t update the
framebuffer often enough?

Answering old questions

What does it mean to have a homogeneous
coordinate other than 1.0?

If (w==0), which transformation(s) still
“work” (affect x and y)?
(w==0) defines an “ideal point” /
point at infinity / direction vector

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

w
y
x

sy
sx

w
y
x

100
00
00

'
'
'

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

w
y
x

ty
tx

w
y
x

100
10
01

'
'
'

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

w
y
x

w
y
x

100
0cossin
0sincos

'
'
'

θθ
θθ

translation rotation scale

Outline for today

3D Transformations
Transformations in OpenGL
Video Break
Transform Hierarchies
Project 2

OpenGL / CS148 Conventions

Positive z-axis points
out of the monitor

Counterclockwise
rotation is positive
(right-hand rule)

+y

+x

+z

2

Review: Definition of Transformation

A transformation is a function of a
point that returns another point

When applied to every point in an
object, it can change the position,
size, or shape of the object

We do our math using the point-
based interpretation, but we’re
really interested in moving objects

Review: Homogeneous Coordinates

Writing every point (x,y) as a triple
(x,y,w) let us…

Why did we write points in
homogeneous coordinates?

Self-plagiarism:
Homogeneous coordinates in 3D

Write a point (x,y,z) as a quadlet:

[xh,yh,zh,w]

…where xh = x*w, yh = y*w, zh = z*w

w is called the ‘homogeneous coordinate’
and is usually equal to one

When w = 1, x = xh, y = yh, and z = zh

3D Translation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

111000
100
010
001

1
'
'
'

ztz
yty
xtx

z
y
x

tz
ty
tx

z
y
x

What were the signs of tx, ty, and tz?

3D Scale

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
)(
)(
)(

11000
000
000
000

1
'
'
'

zsz
ysy
xsx

z
y
x

sz
sy

sx

z
y
x

What were the signs of sx, sy, and sz?

Scaling with a fixed point…

Same as in 2D:
Translate the fixed point to the origin
Scale
Translate the fixed point back where it
belongs

3

3D Rotation

In 2D, a rotation transformation
rotated a point around the origin
In 3D, saying “rotate a point around
the origin” doesn’t define a unique
transformation

3D Rotation

3D rotation is defined by an axis of
rotation (a 3d-vector) and a
rotation angle θ

What were the angles and axes of
rotation on the previous slide?

What was the axis of rotation in
the previous lecture?

3D Rotation

So rotation around the z-axis should look
familiar:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

cossin
sincos

11000
0100
00cossin
00sincos

1
'
'
'

z
yx
yx

z
y
x

z
y
x

θθ
θθ

θθ
θθ

What coordinate shouldn’t change if
I rotate around the x-axis instead?

Rotation around the x and y axes

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
cossin
sincos

11000
0cossin0
0sincos0
0001

1
'
'
'

θθ
θθ

θθ
θθ

zy
zy

x

z
y
x

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
cossin

sincos

11000
0cos0sin
0010
0sin0cos

1
'
'
'

θθ

θθ

θθ

θθ

zx
y

zx

z
y
x

z
y
x

x-axis

y-axis

Looks a lot like the z-axis rotation, right?

Rotation around an arbitrary vector

Math is a big mess, but there is a
magic formula
OpenGL handles this for you
(coming soon to a slide near you)
But OpenGL only knows how to
rotate around an arbitrary vector
that passes through the origin…

Rotation around an arbitrary line

How can we rotate around an
arbitrary line?

4

Review: what do our transformations
“look like”?

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
///
///
///

tsrsrsr
tsrsrsr
tsrsrsr

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

sz
sy

sx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0
0
0

987

654

321

rrr
rrr
rrr

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

Important CG Terminology:
Affine vs. Projective Transforms

All the transforms we have looked
at leave w alone
This defines the class of affine
transforms
Parallel lines remain parallel
Projective transforms can modify w
and don’t preserve parallelism
Affine transforms are a subset of
projective transforms

Reminder: Composite Transforms

Any series of transformations can
be multiplied together and
represented as a single matrix
Works in 3D just like it did in 2D…

T S PXR XP’ = =C P

Three transforms are compressed into one matrix

Outline for today

3D Transformations
Transformations in OpenGL
Video Break
Transform Hierarchies
Project 2

Transformations in OpenGL

Important concept: GL maintains a
“current” transformation matrix that
will transform every vertex you
send it
Just like a “current” drawing color
Defaults to the identity matrix

Translation in OpenGL

glTranslatef(x,y,z);

Dear OpenGL,

Please translate every vertex I send you by (x,y,z) from
now on.

Thanks3f(a million,a million,a million),
Dan

5

What does this really do?

From the glTranslate docs:

Multiply the current matrix by a
translation matrix.

If the current transformation matrix is C,
the new matrix will be:

C’ = C * T

GL transforms post-multiply the current
matrix (the new matrix goes on the right
of the current matrix)

Rotations and scales

glRotatef(angle, x, y, z);

Multiply the current matrix by a
rotation matrix
Rotate all subsequent points [angle]
degrees around the axis (x,y,z)
(which passes through the origin)

glScalef(x,y,z);

The same deal…

Where will this point end up?

glTranslatef(1.0,0,0);
glScalef(2.0,2.0,2.0);
glBegin(GL_POINTS);

glVertex3d(1.0,1.0,1.0);
glEnd();

T S PXIdent XP’ =

Where will this point end up?

glScalef(2.0,2.0,2.0);
glTranslatef(1.0,0,0);
glBegin(GL_POINTS);

glVertex3d(1.0,1.0,1.0);
glEnd();

TS PXIdent XP’ =

Summary [transforms.cpp]

OpenGL translations get applied in
reverse order relative to the order in
which they were specified

One more… where will this pt end up?

glRotatef(90,0,0,1);
glTranslatef(-1.0,0,0);
glBegin(GL_POINTS);

glVertex3d(1.0,0.0,0.0);
glEnd();

Okay ONE more… what if I switch R and T?

Un-doing transformations

glTranslatef(x,y,z);
Undo with glTranslatef(-x,-y,-z);

glRotatef(angle, x, y, z);
Undo with ???

glScalef(x,y,z);
Undo with ???

6

Un-doing transformations
Matrix interpretation: putting the matrix T-1 on
the right side of the composite transform

C = (T1R1S1R2T2)… and we want to undo T2

C’ = C * T2
-1 = (T1R1S1R2T2)T2

-1

= (T1R1S1R2)(T2T2
-1)

= (T1R1S1R2)(I)
= (T1R1S1R2)

Can only undo the most recent transform
If you want to undo multiple transforms, you
need to undo them in reverse order
This is not how you usually undo
transformations

Outline for today

3D Transformations
Transformations in OpenGL
Video Break
Transform Hierarchies
Project 2

Video break: Unreal Engine 3 Demo

Demonstrates the state-of-the art in
everything that’s hard about
graphics for video games:

Physics
Lighting
Modeling and animation

Outline for today

3D Transformations
Transformations in OpenGL
Video Break
Transform Hierarchies
Project 2

A square centered at the origin

void drawSqare() {

glBegin(GL_QUADS);

glVertex3f(-0.5,-0.5,0);

glVertex3f(0.5,-0.5,0);

glVertex3f(0.5, 0.5,0);

glVertex3f(-0.5, 0.5,0);

glEnd();

}

A square centered at the origin?

glTranslatef(-1.0,0,0);
drawSquare();

Where will the square end up?

Calling glTranslate() moves our
origin

Transformations establish a
new coordinate frame

7

Coordinate Frames
Can think of every call to glVertex
as drawing a vertex relative to the
origin

But transformations move the
origin / frame of reference around

Functions like glutSolidSphere() or
our drawSquare() draw objects
centered at the current origin

Coordinate Frames

All transformations are also defined in the current
reference frame

glTranslatef(1,0,0)

Translation moves all subsequent vertices to the
right

glRotatef(90,0,0,1)

glTranslatef(1,0,0)

Translation moves all subsequent vertices up (+y)

Translation is applied in the rotated coordinate
frame

Coordinate Frames

The current transformation matrix
defines the transformation from
the current reference frame to the
global reference frame.

T*R*S

Transformation Hierarchies
Very common paradigm in 3D
graphics:

Object sets up new reference frame
(translation + rotation) and draws itself
Tells “children” to draw themselves
Erases his transformations so the
reference frame is the way he found it world

torso

head arm

wrist

hand

Transformation Hierarchies

What would happen if the head forgot
to cancel his reference frame?

world

torso

head

hand

arm

wrist

Transformation Hierarchies in GL
GL provides a mechanism to simplify transform
hierarchies

Actually maintains a stack of transformations,
where the top one is the current transformation

To create a new local frame, I push the current
matrix onto the stack and modify it

To restore a more global frame, I pop the top of
the stack

8

Transformation Hierarchies in GL
Useful functions:

glPushMatrix();

glPopMatrix();

glLoadIdentity();

Typical GL object [planetup.cpp]:

glPushMatrix();

// Do some transforms

// Draw myself (maybe by calling a display list)

// Draw my children

glPopMatrix();

Matrix Modes
GL actually maintains two stacks and
two “current” matrices

glMatrixMode controls which stack
you’re working with right now

glMatrixMode(GL_PROJECTION);

glMatrixMode(GL_MODELVIEW);

Projection matrix is applied last (on the
left)

Matrix Modes: What’s the Deal?

Rotations / translations / scales almost
always go on the modelview matrix

Almost always only use the projection
matrix for perspective projection, which
we’ll learn about next week.

Typical convention: if you set the matrix
mode to GL_PROJECTION, set it back to
GL_MODELVIEW when you’re done

A typical program rarely touches the
projection matrix more than once

Outline for today

3D Transformations
Transformations in OpenGL
Video Break
Transform Hierarchies
Project 2

Project 2 Preview
Project 2: Tobor and Rubix
Look at the planetup.cpp example
Start early; it’s bigger than pp1!
Talk to each other
The next project will (optionally) be
a group project….

