Display Lists
2D Transformations

>
bk

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
June 30, 2005

Outline for today

o Moving Data Around

o 2D Transformations

o SIGGRAPH video break

o Matrix Transformations

o Composite Transformations

Sending data to the video card

o OpenGL needs to know where you
want to put your vertices

o There are several ways to send your
vertices to the video hardware

o The first part of today’s lecture will
explore three different ways

Approach 1: Immediate Mode

o In “immediate mode” (everything so far
in CS148), commands are sent to the
video card immediately (hence the name)

// Somewhere in my drawing code:

glBegin(GL_POINTS);
glVertex2i(10,20);
glVertex2i(40,50);

glEnd();

What’s wrong with this approach?

Approach 2: Display lists
[list.cpp linelist.cpp stroke.cpp]

// Just once, in some initialization function:

// Ask OpenGL for one new display list
g_mySlickFerrariDL = glGenLists(1);

// Record the display list
glNewList(g_mysSlickFerrariDL, GL_COMPILE);
glBegin(GL_TRIANGLES);

// ...maybe millions of glVertex calls...

// ..maybe change colors, other GL commands...
glEnd();
glEndList();

// Every frame I just need to do:
glCallList(g_mySlickFerrariDL);

Display lists: Pros and Cons

o Save the overhead of making
1,000,000 function calls per frame

o Can draw the same object multiple
times with different OpenGL state

What’s one other advantage of
using display lists?

What’s one disadvantage of
using display lists?

Immediate Mode with Arrays

o Usually I don’t know all my vertex locations when
I code my program

o So let’s say I read my vertices from a file into a
big array...

glBegin(GL_TRIANGLES);

for(int i=0; i<numVertices*6; i+=6) {
glVertex2i(vertices[i+0],vertices[i+1]);
glVertex2i(vertices[i+2],vertices[i+3]);
glVertex2i(vertices[i+4],vertices[i+5]);

¥
glEnd();

What’s wrong with this approach?

Approach 3: Vertex Arrays [varrays.cpp]

o Tell OpenGL to grab all of your vertices
from a block of memory

// somewhere in my drawing code

// tell GL I'm going to use vertex arrays
glEnableClientState(GL_VERTEX_ARRAY);

// tell GL where my vertices live
glVertexPointer(2,GL_FLOAT,0,myvertices);

// tell GL to draw my triangles
glDrawArrays(GL_TRIANGLES,0,numVertices);

// leave GL the way I found it
glDisableClientState(GL_VERTEX_ARRAY);

Vertex Arrays: Pros and Cons

o Pro: Avoid the overhead of
1,000,000 function calls

o Pro: You can change the
contents of the array whenever
you want (unlike display lists)

o Con: Vertex data still gets
copied every frame

What do super-hard-core game
developers do?

o Method 4: Vertex buffer objects

o Allocate memory on the video card,
only transfer once

o Similar to display lists but often
faster

Outline for today

o Moving Data Around

o 2D Transformations

o SIGGRAPH video break

o Matrix Transformations

o Composite Transformations

2D Transformations

o Transformations are functions that
change the position of a point

Take one point in R", return another
point in R"

o If we apply a transformation to
every point in an object, we can
change the shape or position of the
whole object

2D Translation

X'=x+tx y =y+ty

ty = 1.0

tx = 2.0
@

o Moves input point by a vector [tx,ty]

2D Translation for Objects

X'=x+tx y =y+ty

. tx = 2.0
| 7 ty = 1.0
I

o Moves entire object by [tx,ty]

2D Scale

X" = X * sx y' =y *sy

sx =sy = 2.0
(th_ifs is a le)
[2x,2y] uniform scale
[x,y1
\ |

o Multiplies input point by (sx,sy)
o Moves point relative to the origin

What would the scale (1,-1) do?

2D Scale for Objects

X' = X * sx y' =y *sy

& sx = sy = 2.0
\ \

o Resizes entire object

What else did this do to my object?

2D scaling with a fixed point

Maybe we want (xf,yf) not to move when we scale...

sx =sy = 2.0
A & (xf,yf) = object center

What point doesn’t move when we scale?

How can that help us scale with a fixed point?

x' = xf + (x - xf)sx y' = yf + (y - yf)sy

X' =x*sx+ (1-sx)xf y =y *sy+ (1-sy)yf

Why use the second form of these equations?

2D scaling with a fixed point

o What we really just did was
combine two translations and a
scale

RN

Translate by (-xf,-yf) Scale by (sx,sy) Translate by (xf,yf)

2D Rotation 2D Rotation

o Moves a point 8 degrees along a circle o This is straightforward in polar coordinates:
centered at the origin
X = r COS ¢ y =rsin ¢
g = 900 x" = r cos(¢+0) y = rsin(¢+6)

o But converting to polar coordinates is a mess
o So we'll use trig identities...

x" = r cos(¢+0) = r cos ¢ cos 0 - r sin ¢ sin 0

o But the other transformations had a y' = rsin(¢+6) = r cos ¢ sin 6 + r sin ¢ cos 6

formula on their slides... X' =X COS @ -y sin B

o Doesn't rotation get a formula too? Isn't rotation good enough for Mr. Bigshot graphics 1= i +

lecturer? This is outright transformationism! As someone who believes in the equity of y xsin@ +ycos6
all transformations, I'm appalled by this behavior and I'm going to write a report to the
something or other board of something or other unless I get a formula for rotation also.
Right now.

2D Rotation for objects 2D Rotation about a fixed point

L F el b

o Combine two translations and a
rotation

What else did this do to my object? .
o To rotate about a point (xr,yr):

How do we fix this?

’

X" = Xr + (X -xr)cos 0 - (y-yr)sino

’

y' =yr+ (x-xr)sin0 + (y - yr) cos 6

SIGGRAPH video break ,

Outline for today

Ron Fedkiw et al (Stanford)... various
physical simulation techniques

o Moving Data Around
o Physical simulation: using physics to get o 2D Transformations
realistic behavior from virtual objects .
Examples: f = ma, Navier-Stokes o SIGGRAPH video break

o Simulation vs. rendering o Matrix Transformations
o Composite Transformations

Representing Transformations

o We do lots of transformations in
computer graphics

o We do so many transformations in
computer graphics that I want to
say that again

o We do lots of transformations in
computer graphics

o Need an efficient way of
representing transformations

Homogeneous Coordinates

o Write a point (x,y) as a triple:
[xh,yh,w]
...where xh = x*w, yh = y*w

o w is called the *homogeneous
coordinate’ and is usually equal to
one

oWhenw =1,x=xhandy =yh

Matrix transformations

o In homogeneous coords, our basic
transformations can be written as
matrix multiplications

o I submit to you that this matrix
represents a translation by [tx,ty]:
0 tx
1ty
01

2D Matrix Translation

1 0 tx|x 1*x+0*y+tx*1 X+1X
0 1 ty|y|=|0*x+1*y+ty*1|=|y+ty
00 1|1 0*x+0*y+1*1 1
o From a few slides ago:

X' =X+ tx y' =y +ty

o Hooray! It works!

2D Matrix Transformations

X' 1 0 tx|[x

Translation yl=[0 1 ty|y
by [tx,ty] |1 L 0 JH
[x] [? 2 ?2]x

Scale y'l=? 2 2|y
by [sx,sy] 1] L 0 J{J

>

Rotation

7 [cos@ —sing 0
y'|=|sin@ cos® 0O
by 6 1] 0 0 1

X

y
1

|

Outline for today

o Moving Data Around

o 2D Transformations

o SIGGRAPH video break

o Matrix Transformations

o Composite Transformations

Composite transformations

o Often we want to apply multiple
transformations sequentially

o Easy to do with matrices: just build a new
transformation matrix as the product of
multiple transformations

o Any sequence of transformations can
be collapsed into one matrix by
multiplying the individual
transformation matrices

Example: Composite Translation

o Let’s say we want to translate a point by
[tx1,tyl], then by [tx2,ty2]
o The two transformation matrices are:

10 ta 10 tx2
01ty 01 2
00 1 00 1

o Their product is:

1 0 1 0 tx2] [1 0 txi+tx2
0 1 tyl|0 1 ty2|=]0 1 tyl+ty2
10 0 1j0 0 1 00 1

Example: Rotation with a fixed point

o Let’s say we want to rotate a point by 6
degrees, with a fixed point [fx,fy]

o Translate, then rotate, then translate
1 0 fx|cos® -sing 0|1 0 —fx
0 1 fy|sind cosé¢ 0|0 1 —fy
00 1 0 0 110 0 1
cos@ —sin@ -cos@*fx +sin@*fy +fx
sin@ cos@ -sin@*fx-cos@*fy +fy
0 0 1

Fun with composite transformations

o How would you transform the dark triangle
into the light triangle?

A

Y%

Instances

o Consider a scene composed of many simple 2D
objects

O
T

o we could store vertices for each object

o ...or we could define simple primitives at
convenient locations, and apply transformations
before I draw each object

Instances as Display Lists

o A typical program structure in graphics
Define vertices for a few primitives that will
appear in many places
Render those vertices into a display list for each
primitive
At every frame of your program, ask OpenGL to
apply a separate transformation each time you
call your display list

o [movingsquares.cpp]

o A bigger program that we now have the tools to
understand

Next time

o 3D Transformations
o Transformations in OpenGL

13 56 65 552
32 21 1233 121
56 223 121 221
0 0 0 1

