CS148 Overview
Display Devices

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
June 21, 2005

Outline for today

o What is computer graphics?
o Intro to CS148

o Some terminology

o Display devices

o Graphics/GUI programming

Outline for today

o What is computer graphics?
o Intro to CS148

o Some terminology

o Display devices

o Graphics/GUI programming

i)
(ennnEe)
]
[
I]
(HHERRARR)
(g
kAR
sepnnnn)
(R
B V.V IV B Y n
e | [R
1o (o) (0 (#8) 1| | i / \ ’
< e G 1 e To) () <. .\ () (o) /.
VT T wm e o e 70N o 7
[T [IR € <
I_ . 7 D e A S
i 000000 A 00000 i
7 [/ \ A / \

- -
CS148: Intro to Computer Graphics "

summer 2005 edition — NS

\

HIGH SCORE 2up
0 29

1060 0

MASTER YODA

Computer graphics is...

o Computer-generated artwork
o Interactive 2D graphics

o Interactive 3D graphics

o Photorealistic 3D graphics

o Photorealistic 3D video

o Digital photography

One definition to rule them all...

o Computer graphics is the science of
coloring pixels on a display to trick
the viewer into seeing an object or
a scene.

What type of computer graphics will we
address this quarter?

o CS148 is (mostly) about interactive 3D
graphics
A little bit on 2D graphics
A little bit on non-interactive 3D graphics
No image processing or digital photography

CS448a: Computational photography
CS448b: Visualization

CS348a: Geometric modeling
CS348b: Rendering

CS223b: Computer vision

O O O 0O O©

Outline for today

o What is computer graphics?
o Intro to CS148

o Some terminology

o Display devices

o Graphics/GUI programming

CS148: Intro to Graphics

o Introduces important mathematical
concepts in graphics

o Primarily focused on giving you a working
knowledge of OpenGL

What you learn will generalize to other 3D
environments, e.g. DirectX, Matlab, Amira, Maya

o Not as theoretically in-depth as CS248; if
you plan to continue in graphics at
Stanford, you should look at CS248

Administrative Blah Blah 1: Grading

o 50% Programming Projects

o0 20% Midterm

o 30% Final

o You need passing work on both
exams and all projects to pass

o This part of the lecture is boring so I'm including thoroughly
gratuitous pictures of cute puppies to keep you awake:

Administrative Blah Blah 2: Late Policy

o You have three “late days” for the quarter
o 25% lost per day after that
o 3 hours late is 1 late day

o For group projects, all members lose late
days for late submissions

o Make your life easier and submit on time

Administrative Blah Blah 3: Textbook

o OpenGL Programming Guide v1.4,
Fourth Edition (“The Red Book™) is
the official text

o Second edition is online and linked
from the website (85% similar)

o Handouts posted the night before
class — print them out if you want
them in class

Administrative Blah Blah 4: Math

o There is math in graphics
o This is not a math course

o Look over the “essential math”

handout
o Get in touch with us if you
have questions

O T
e i

[y rg
Clifford

Magnet
Math

Administrative Blah Blah 5: Programming

o OpenGL and GLUT (GL Utility Toolkit)

o All grading will be done on the myth,
firebird, and raptor Linux machines in
Sweet Hall

o You can develop at home if you like, and
we’ll provide Windows project files, but be
sure to test on the Linux machines

o Subtle subtext: there is substantial
programming in CS148

Wait! That's not a puppy!

Administrative Blah Blah 6:
Getting in Touch

http://cs148.stanford.edu
csl48staff@cs.stanford.edu

Dan'’s office hours:
Tuesday, 1pm-3pm, Gates 116
Or email dmorris@cs.stanford.edu

Sean’s office hours:
TBA

Summary: How to Succeed in CS148

o Come to class

o Start the projects early

o The staff will not debug your
programs!

o Be creative: we want to give you
extra credit

Suggest optional project components
or whole projects from your own work

o Submit questions for exams

Outline for today

o What is computer graphics?
o Intro to CS148

o Some terminology

o Display devices

o Graphics/GUI programming

Terminology:
PRIMITIVES are made of PIXELS

o Pixels are the dots that make your
display, you have on the order of a
million of them

o Primitives are 2D shapes... generally
lines, triangles, and quads (4-sided
polygons)

Terminology: Fun With Primitives: Make an Octagon From...
OBJECTS are made of PRIMITIVES

Triangles

o Even 3D objects are made of 2D
primitives

o Objects can be tens to billions of
primitives

o More primitives = smoother objects

Quads

One quad + triangles (why?)

Terminology: _
SCENES are made of OBJECTS Outline for today

o Tens to thousands of objects per scene o What is computer graphics?
o Millions of primitives in many scenes o Intro to CS148

o Speed is huge in graphics o Some terminology

o Display devices

o Graphics/GUI programming

An ideal graphics programming interface What can your monitor do?
Dear Monitor, o You can’t tell your monitor “draw
some spaceships”
Please draw a green spacedlits in which a o You can’t even tell your monitor
le alien éo dhooting at a Ulue wobot. “draw some triangles”
o Your monitor only knows how to
S 4, turn dots on and off.

Dan

Raster-Scan Displays: CRT’s G

o Incoming volts turn on
electron gun
o Magnetic field bends Cathode Ray Tube
beam toward screen E"g“”“’
o Electrons hit tiny —]
phosphor elements to o
turn them on Calor signals
o You see pixels =3
o Beam sweeps over and
over at about 60Hz
Why so fast?

Raster-Scan Displays: LCD’s

o Grid of wires puts
volts on crystals

o Crystals twist to block
light or let it pass

o Big white light shines
behind the whole grid

o Ared, green, or blue
filter sits in front of
each crystal

o Still scans from side
to side and top to
. C T _T¥N
60 60

gnification

Positve voltage
appled nere

Raster-Scan Displays: Summary

o All a raster-scan display can do is
scan through every pixel
sequentially.

o It needs instructions about what to
do for every pixel.

Doing it by hand

for(int i=0; i<height; i++) {
for(int j=0; j<width; j++) {
put out the volts for the current pixel;
wait until it’s time for the next pixel;
3
3

This would not be very much fun...

Disappointment?

Dear Monitor,
7'”! 5 Ei. Eg. M:é. i.z
inotead,

Stucerely.

Dan

PS Doun't call me ecther.

Solution: the framebuffer

o Graphics card takes care of talking
to the monitor

o You just need to fill up an array
telling the graphics card which
colors should go where

T

Framebuffer data

0030000030000030
UUJUUUUU JUUULLIY
0030000130000030

1bpp black-and- Eumoooioooo0
white display 0011111111100030
1000020
0010000010000030
uuJuuuulJuuuuule
0010000030000030
0010000010000010
0 plxel off - dlxel s black
1 pixel or 1 pixalis i lurrireced
Bit values | Relative intensity
00 0 (none of this color)
6bpp color display 01 1/3 (dim)
10 2/3 (brighter)
11 11 (brightest)

What color is 000101 in a 6bpp BGR framebuffer?

Real-world framebuffers

o Typically 24bpp or 16bpp
o Typically 1280x1024

o How much memory does this take
up?

Has this made our lives easier?

o Filling the framebuffer with pixels
manually isn’t practical

o Even simple images have thousands
of pixels

o Try drawing this baby pixel-by-pixel...

@
/A
224

Primitives save the day

void circle(int cx, int cy, double radius, bool
filled);

void rectangle(int cornerx, int cornery, double
width, double height, double angle, bool
filled);

o Now drawing the baby doesn’'t seem
so bad...

Wl |
\»l)/

How does all this fit into CS148?

o Thursday'’s class and Project 1:
Turning primitives into pixels

o The rest of the course:
Using primitives — supplied by
OpenGL — to make pretty pictures

Outline for today

o What is computer graphics?
o Intro to CS148

o Some terminology

o Display devices

o Graphics/GUI programming

What's under the hood?

void circle(int cx, int cy, double radius, bool
filled);

o Every video card speaks a slightly different
language

o Different video cards know about different
primitives

o Different video cards live in different places
in hardware (PCI, AGP, USB, etc.)

Device drivers

o A device driver is a library that has
low-level routines for talking
directly to the hardware

o Generally released by the
manufacturer

o Might contain a drawCircle() routine
that does all the hard parts

o But something’s still missing...

Standard Graphics API's

o All device manufacturers write their
drivers with a common set of
function names, so lots of programs
can use them

o Multiple standards exist:
OpenGL
Direct3D

GDI, X, PlayStation, etc.
DIRECT X

Putting it all together:
device-independent programming

o Write program using OpenGL

o Compile program against empty
library or OS shell library

o At runtime, the OS links your
program to the device driver’s
version of OpenGL

Putting it all together: Linux

Your favorite game
(speaks OpenGL)

1
OpenGL library
(finds driver for you)

1
XFree86 DRI Module (aka driver)
(speaks video card’s language)

1
AGP Kernel Module
(formats data for the AGP bus)

Linux kernel
(writes data to the AGP bus)
11
Snazzy Video Card
(speaks monitor’s language)

Putting it all together: Windows

‘ Application ‘
OpenGiLa

OPENGL3ZDLL

[omzon

50 Command
Fathiry

¥

WINSRV.DLL
Generic OpenGL| GDI Server]
Module Module

[
Video Display Driver

OpenaL Support]

[0 001wt | [suppor

Finally, happiness...

Dear Mouiton,
9 'm leaving you for OenGL. Ste speate
commanicate.

Stucenely,

Dau

PS 7 'm just a man.

GUI’s create the same problem

o 3D graphics would be quite dull without
interactivity

o Want to get mouse and keyboard info
o Want slick GUI's
o0 OpenGL doesn’t help us here...

Solution: GLUT

o GLUT: GL Utility Toolkit

o Standard set of function names to
get simple Ul features

o Plays nice with GL

o Implemented (and free) for many
platforms B

Sample GLUT program

void main(int argc, char** argv) {
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGBY);
glutlnitWindowSize(640, 480);
glutInitWindowPosition(100, 100);
glutCreateWindow(“This is a sample GLUT program™);
glutDisplayFunc(myDisplay);
glutMouseFunc(myMouse);
glutkeyboardFunc(myKey);
glutReshapeFunc(myReshape);
glutMainLoop(); /* Doesn’t return... */

3

// Keyboard function — called when a key is pressed
koid myKey(unsigned char key, int x, inty) { }

// Mouse function — called when a mouse button is pressed
void myMouse(int button, int state, int x, inty) { }

// Display function — called to redraw window
void myDisplay(void) { }

For next time

o Find us if you have questions
o Play with project 1

o Look over the essential math
handout

o Next time: scan conversion

+ + o+
+
+ +

